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Abstract

We explored the effects of silicon-containing water (BT) intake on gastrointestinal function

and gut microbiota. BT was obtained by pressuring tap water through silicon minerals (mull-

ite, Al6Si2O13) column. BT decreased H2O2 chemiluminescence counts, indicating its anti-

oxidant activity. Four weeks of BT drinking increased H2O2 scavenging activity and

glutathione peroxidase activity of plasma. BT drinking did not affect the body weight but sig-

nificantly reduced the weight of feces and gastrointestinal motility. BT drinking significantly

suppressed pylorus ligation enhanced gastric juice secretion, gastric reactive oxygen spe-

cies amount, erythrocyte extravasation, IL-1β production by infiltrating leukocyte, and lipid

peroxidation within gastric mucosa. Data from 16S rRNA sequencing revealed BT drinking

significantly increased beneficial flora including Ruminococcaceae UCG-005, Prevotella-

ceae NK3B31, Weissella paramesenteroides, Lactobacillus reuteri, and Lactobacillus muri-

nus and decreased harmful flora including Mucispirillum, Rodentibacter, and

Staphylococcus aureus. This study pioneerly provided scientific evidences for the potential

effects of water-soluble forms of silicon intake on antioxidant activity, gastrointestinal func-

tion, and gut microbiota modulation.

Introduction

Silicon is an essential micronutrient and is the third most abundant trace element in the

human body. The major food sources of silicon are cereals, oats, barley, white wheat flour, pol-

ished rice, mineral water, and beer. In contrast, animal source foods such as meat and dairy

products contain lower level of silicon. Silicon is naturally present in food as several forms of

silicate, including silicon dioxide (SiO2), free ortho-silicic acid (H4SiO4), or silicic acids

bounded to certain nutrients [1].

Mounting evidences indicate that silicon possesses pharmacological effects and plays an

essential role in health including bone mineralization, collagen synthesis, aging of skin, integ-

rity of hair and nails, atherosclerosis, and other disorders [2]. For example, dietary silicon
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deficiency researches on laboratory animals showed stunted growth and profound defects in

bone and other connective tissues, which suggested the role for silicon in normal growth and

development in higher animals [3]. In addition, some studies stated that higher dietary silicon

intake was correlated with higher bone mineral density in men, pre-menopausal women, and

postmenopausal women taking hormone replacement therapy (HRT) but not in postmeno-

pausal women not taking HRT [4].

Previous research revealed that organic silicon possessed the antioxidant, anti-apoptotic,

and neuroprotective potential against hydrogen peroxide toxicity in human neuroblastoma

cell line [5]. In addition, the beneficial effect of silicon incorporated in a restructured pork

matrix has been found in aged rats fed with high-saturated fat and high-cholesterol diet. Die-

tary enrichment with silicon enhanced hepatocyte antioxidant defenses by removing hydrogen

peroxide-induced oxidative stress [6]. These evidences informed that silicon may participate

in antioxidant defense and anti-apoptosis pathway, and may be a prominent therapeutic sub-

stance in humans.

The composition of the intestinal microbiota varies among individuals and throughout life-

time, due to various environmental and genetic factors. Appropriate composition of gut

microbiota is essential for hosts to maintain gastrointestinal tract health [7]. However, distur-

bance of gut microbiota is correlated with damaged intestinal epithelium and other gut barrier

dysfunction, which allows for lipopolysaccharide penetration and causes metabolic endotoxe-

mia [8, 9]. Several kinds of intestinal flora, such as Escherichia coli, Enterobacteriaceae, and

Bacteroides, are considered as biomarkers in inflammatory bowel diseases [10]. These patho-

genic bacteria can destroy intestinal barrier and subsequently invade the body leading to endo-

toxemia [11]. In contrast, several probiotics and their metabolites may depress the

proliferation of pathogenic bacteria, and increase the intestinal barrier function [12, 13]. Previ-

ous research using administration of colloidal silicon dioxide in tablet form in patients with

acute diarrhea revealed that the high-dispersion silicon dioxide enterosorbent exhibited antidi-

arrheal effect [14]. Moreover, it is reported that silicon dioxide blocks the receptors of mucous

membrane that is responsible for pathogens adhesion and toxins binding, and accelerates the

adsorption of active substances in intestine [15]. Although several biological effects of dietary

silicon have been explored, its influences on gastrointestinal function and intestinal microbiota

composition have not been fully determined.

In this study, we designed a setup to produce silicon-containing water (BT) by guiding tap

water via a pressure gradient through one activated carbon column, two ion exchange resin

columns, one activated filter column, one silicon minerals (mullite, Al6Si2O13) column, one

UV sterilizer and magnetization. This setup can recirculate the water with silicon minerals and

produce BT with different SiO2 concentration. We aimed to explore the effects of drinking sili-

con-containing water (BT) on human health or disease prevention through rodent models.

Concisely, this preclinical research was designed to evaluate the characteristics of silicon-con-

taining water and its multifaceted influences on reactive oxygen species scavenging activity,

gastrointestinal function, and gut microbiota.

Methods and materials

A setup for BT preparation

BT was provided by Bestec Biotechnology Company (Bestec Biotechnology Co., LTD, Taipei, Tai-

wan). Before preparing the BT, tap water was guided via a pressure gradient through one activated

carbon column, two ion exchange resin columns, one activated filter column, one silicon-mineral

(mullite, Al6Si2O13) column, one UV sterilizer, and magnetization, respectively, as shown in Fig

1A. With increased time of recirculation preparation procedure, the different concentration of BT
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was obtained. Accordingly, we produced 0.5BT (12 hour recirculation), 1BT (24 hour recircula-

tion), 2BT (48 hour recirculation), and 5BT (120 hour recirculation) in sequence.

Assay of water SiO2 concentration

The dissolved silica concentration was determined by molybdosilicate method (APHA 1998).

Standard solution of different concentration ranging from 10 to 40 ppm was prepared by dis-

solving Na2SiO3. The sample were stirred well and kept for three hours to complete the reaction.

The optical density was measured for standards and water sample at 812 nm using UV-visible

spectrophotometer (CT-3800, ChromTech, Kingtech Scientific Co., Ltd., Taipei, Taiwan).

Animals

Forty male 7-week-old Wistar rats and fifty male 7-week-old C57BL/6 mice were purchased

from BioLASCO Taiwan Co., Ltd, (Yi-Lan, Taiwan). Animals were housed in the animal

Fig 1. Setup of BT preparation and characteristic of BT. (A) A setup for BT preparation. BT was produced by

filtering tap water through one activated carbon column, two ion exchange resin columns, one activated filter column,

one Si minerals column, one UV sterilizer and magnetization. (B) SiO2 concentration of BT. With increased time of

recirculation preparation procedure, the higher concentration of BT containing SiO2 was produced. The SiO2

concentration in the prepared BT was time-dependently increased in the 0.5BT, 1BT, 2BT, and 5BT as compared with

tap water (n = 3). 0.5 BT, 12 h of recirculation preparation; 1 BT, 24 h of recirculation preparation; 2BT, 48 h of

recirculation preparation; 5 BT, 120 h of recirculation preparation. The data are mean ± SEM and analyzed by one-way

ANOVA. �P<0.05; ���P<0.001.

https://doi.org/10.1371/journal.pone.0248508.g001
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center of National Taiwan Normal University at a controlled room temperature under a 12

hours dark-light cycle with free access to food and tap water. After one week period of accom-

modation, rats and mice were divided in to five groups respectively, eight rats per group and

ten mice per group, including control (tap water), 0.5 BT, 1 BT, 2 BT, and 5 BT drinking. All

treatments were used as daily drinking water for 4 weeks. Animal body weights were measured

before and after treatments weekly. All animal experiments were performed in accordance

with the guidelines of the National Science Council of the Republic of China (1997). This

study was approved by the Institutional Animal Care and Use Committee of National Taiwan

Normal University (No. 107015). All animal experiments were performed under anesthesia,

and all efforts were made to minimize suffering.

Assay of gastrointestinal propulsion

In order to evaluate the effects of drinking silicon-containing water on gastrointestinal motil-

ity, we utilized charcoal meal test for the measurement of gastrointestinal transit [16]. After

four weeks of experimental treatments, mice were housed in cage individually with free access

to food and water. Fecal samples of mice were collected in a period of 24-hours for the mea-

surement of daily fecal weight. Afterwards, all mice were deprived of food for 24 hours but

with free access to water before experimentation. Gastrointestinal transit of mice was evaluated

by the transport of a test meal containing non-absorbable marker, charcoal (Sigma-Aldrich,

St. Louis, USA). In brief, the test meal (0.1 ml) was administered intragastrically by oral gavage

feeding tube. The mice were anesthetized with intraperitoneal injection of urethane (1.2 g/kg,

Sigma-Aldrich, St. Louis, USA) thirty minutes after test meal administration. After the small

intestines of mice were harvested rapidly by laparotomy, mice were sacrificed by intravenous

injection of potassium chloride. Gastrointestinal transit was shown as the percentage of the

length of the small intestine traversed by the charcoal marker divided by the total length of the

small intestine.

Assay of gastroprotective effect of BT

In this part of study, pylorus ligation is a typical method for the uniform production of gastric

ulceration in rat, thereby being commonly used in the assessment of antiulcer substance [17].

After four weeks of experimental treatments, rats were deprived of food for 24 hours but with

free access to water before experimentation. After rat was anesthetized with intraperitoneal

injection of urethane, the stomach was exposed by midline laparotomy, and the pylorus liga-

tion was conducted. Four hours after the pylorus ligation, the stomach was harvested, and the

gastric juice was collected into graduated test tube.

In vitro chemiluminescence recording for reactive oxygen species

The free radical level of the stomach tissue was measured by luminol chemiluminescence

detection method [18]. Concisely, a piece of freshly harvested stomach tissue from rat was

mixed with 0.5 ml of 0.1 mmol/L luminol (5-amino-2,3-dihydro-1,4-phthalazinedione, Sigma,

Chemical Co., St. Louis, USA) and was analyzed with a chemiluminescence analyzing system

(CLD-110, Tohoku Electronic Inc. Co., Sendai, Japan). Firstly, the detection were conducted

on stomach tissues without luminal for 60 seconds, which were set as baseline. Afterwards, the

chemiluminescence signals emitted from the mix of stomach tissue and luminol, which repre-

sented the hydrogen peroxide content in the stomach lumen, were recorded for 240 seconds.

In addition, we evaluated the free radical scavenging activity of several dosages of BT and rat

plasma from each groups. Briefly, 0.2 ml of test samples were mixed with 0.5 ml of luminol

and 0.1 ml of H2O2 (0.03%, Sigma-Aldrich, St. Louis, USA). Similarly, the detection were
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performed on test samples for 60 seconds, which were set as baseline. Subsequently, the test

samples were added with luminal and H2O2. The enhanced chemiluminescent signals from

the sample-luminol-H2O2 mixure were recorded for 180 seconds. The chemiluminescent (CL)

counts were measured every 10 seconds. The total CL counts representing the hydrogen perox-

ide levels count in luminal detection method were calculated from the sum of each CL counts

with baseline correction.

Glutathione peroxidase activity assay

Glutathione peroxidase (GPx) activity of rat plasma from each group were analyzed with gluta-

thione peroxidase assay kit (Cayman Chemical Company, Ann Arbor, MI, USA). The oxidized

glutathione, produced upon the reduction of hydroperoxide by GPx, is recycled to glutathione

by glutathione disulfide reductase and nicotinamide adenine dinucleotide phosphate

(NADPH). The oxidation of NADPH to NADP+ is accompanied by a decrease in the absor-

bance at 340 nm. The rate of decrease in the A340 is directly proportional to the GPx activity in

the plasma, which was expressed in nmol/min/ml.

Histological examination

The stomach tissue were fixed with 10% formalin in phosphate-buffered saline for 24-hours

and embedded in paraffin. Sections (5 μm) of rat stomach were sliced with microtome (RM

2125 RTS, LEICA, Germany). Sections were mounted on slides, and stained with hematoxy-

lin and eosin (H&E) for pathological examinations. We utilized light microscopic evalua-

tion to analyze the histopathological changes of the stomach including erythrocyte

extravasation and leukocyte infiltration of stomach mucosa. We performed immunohis-

tochemistry to evaluate the oxidative damage and the pro-inflammatory response of stom-

ach mucosa in each group. In brief, sections of rat stomach were deparaffinized, rehydrated,

and immunohistochemically stained with 4-hydroxynonenal (4-HNE) (1:400; BIOSS, Bos-

ton, MA, USA), 3-nitrotyrosine (3-NT) (1:400; Abcam, Cambridge, MA, USA), and inter-

leukin-1 beta (IL-1β) (1:500; Abcam, Cambridge, MA, USA) antibodies, respectively.

Quantitative analysis of histological examination was performed with software ImageJ

(National Institutes of Health, Bethesda, MD, USA). Three sections from each group were

selected for the quantification of erythrocyte extravasation, 4-HNE, 3-NT, and IL-1β stain-

ing through analyzing the area of erythrocyte and the brown signals of 4-HNE, 3-NT, and

IL-1β divided by the total area of the tissue.

DNA extraction and sequencing of gut microbiota

Fecal samples were collected from rats after 4 weeks of experimental treatments. Fecal

microbiota DNA was extracted using the QIAamp DNA Stool Mini Kit (Qiagen, USA).

The next-generation sequencing of bacterial 16 S ribosomal RNA genes following previous

procedure were conducted to distinguish the intestinal bacteria [19]. The V3–V4 regions

of 16S rRNA genes, which were generally used for intestinal microbiome studies, were

amplified using a specific primer with a barcode. Fecal microbiota composition was

assessed using Illumina HiSeq sequencing of 16S rDNA amplicon and QIIME-based

microbiota analysis. Operational taxonomic unit (OTU) clustering and species annotation

were performed from representative sequences using UPARSE software (Version 7.0.1001)

and the Greengenes Database based on Ribosomal Database Project classifier (Version

2.2), respectively. OTUs abundance information was normalized using a standard of

sequence number corresponding to the sample with the least sequences.
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Statistical analysis

GraphPad Prism 6 (GraphPad Software Inc., CA, USA) was used for graphing and statistical

analysis. All values were expressed as the mean ± standard error of the mean (SEM). All

parameters were compared by one-way analysis of variance (ANOVA) to assess differences

among groups. Differences within each groups were analyzed by Student’s paired t-test.

P< 0.05 indicated a statistical significance.

Results

SiO2 concentration of BT

The SiO2 concentration of all types of BT was demonstrated in Fig 1B. Our data showed that

SiO2 concentration was time-dependently increased in the 0.5BT (3.740 ± 0.187 vs.

0.106 ± 0.005, P = 0.0153), 1BT (7.732 ± 0.187 vs. 0.106 ± 0.005, P<0.0001), 2BT

(15.280 ± 0.729 vs. 0.106 ± 0.005, P<0.0001), and 5BT (37.400 ± 1.556 vs. 0.106 ± 0.005,

P<0.0001) water samples as compared with tap water. This data informed that a BT setup can

stably produce SiO2 containing water.

Hydrogen peroxide scavenging activity of BT

We compared the hydrogen peroxide (H2O2) scavenging activity of RO water and four con-

centrations of BT. Our data showed that 0.5BT (120026 ± 40147 vs. 416237 ± 131295,

P = 0.0237), 1BT (59131 ± 24395 vs. 416237 ± 131295, P = 0.0079), 2BT (49762 ± 7524 vs.

416237 ± 131295, P = 0.0067), and 5BT (47075 ± 7890 vs. 416237 ± 131295, P = 0.0064) signifi-

cantly reduced H2O2-induced chemiluminescent counts, which demonstrated BT possessed

H2O2 scavenging activity as compared with RO water (Fig 2A and 2B).

Hydrogen peroxide scavenging activity of plasma

Four weeks after drinking all kinds of water, we compared the H2O2 scavenging activity of

rat plasma from each goup. Our data revealed that plasma from 5 BT drinking group

(26753 ± 1187 vs. 56240 ± 12369, P = 0.0444) significantly reduced H2O2-induced chemilu-

minescent counts, as compared with plasma from tap water drinking group (Fig 2C and

2D). This result indicated that drinking BT can elevate antioxidant capacity of plasma.

Glutathione peroxidase activity of plasma

We analyzed the glutathione peroxidase activity (GPx) of rat plasma from each group after

four weeks of different water drinking treatments. Our result demonstrated that 5 BT drinking

(63.62 ± 6.189 vs. 49.05 ± 1.266, P = 0.0412) significantly increased GPx activity of plasma, as

compared with tap water drinking group (Fig 2E).

Status of animals and defecation recording

We recorded the basal physiological parameters including the body weight, dry weight of

feces and the ratio of dry weight of feces to body weight in five groups of mice. As shown in

Fig 3A, the increase of body weight was similar in all groups of animals. However, the dry

weight of feces (Fig 3B) and the ratio of dry weight of feces to body weight (Fig 3C) were

significantly decreased in the 0.5BT (1.243 ± 0.096 vs. 2.263 ± 0.211, P<0.0001), 1BT

(1.487 ± 0.089 vs. 2.263 ± 0.211, P = 0.0007), 2BT (1.375 ± 0.122 vs. 2.263 ± 0.211,

P<0.0001), and 5BT (1.222 ± 0.083 vs. 2.263 ± 0.211, P<0.0001) groups as compared with
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control group. Moreover, there was no significant difference of moisture content of the

feces among all groups (Fig 3D).

Effects of BT on gastrointestinal motility

We determined the gastrointestinal motility with the charcoal meal test on mice, which dis-

played the gastrointestinal transit rate of the small intestine in the rodents. As shown in Fig 4,

there were no significant effects for BT drinking on gastrointestinal transit rate in the 0.5BT,

1BT, and 2BT groups. However, 5BT drinking group (64.750 ± 4.390 vs. 90.090 ± 5.168,

P = 0.0005) displayed a significantly reduced gastrointestinal transit rate as compared with

control group, which represented a depressed small intestinal motility.

Fig 2. Antioxidant activity of BT and plasma. (A) The curves of CL counts in several kinds of water. B, baseline; L, luminal; H,

H2O2. (B) H2O2 scavenging activity of BT. H2O2 scavenging activity was indicated by CL counts in several kinds of water. CL

counts were decreased by 0.5 BT, 1 BT, 2 BT and 5 BT (n = 3). RO, reverse osmosis. (C) The curves of CL counts in plasma of

different groups. B, baseline; L, luminal; H, H2O2. (D) H2O2 scavenging activity of plasma. CL counts were decreased by plasma of

5 BT drinking group (n = 3). (E) Glutathione peroxidase activity of plasma. The plasma from 5 BT drinking group demonstrated

increased glutathione peroxidase activity (n = 3). GPx, glutathione peroxidase. The data are mean ± SEM and analyzed by one-way

ANOVA. �P<0.05; ��P<0.01.

https://doi.org/10.1371/journal.pone.0248508.g002
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Effects of BT on pylorus ligation induced ulcer

Because pylorus ligation stimulated the gastric juice secretion in vagally intact rats, we deter-

mined the volume of gastric juice response to pylorus ligation in these five groups of rats. As

shown in Fig 5A, our result indicated that only the 5BT group (0.750 ± 0.130 vs. 1.885 ± 0.309,

P = 0.0361) displayed a significant decreased gastric juice secretion as compared with control

group. Pylorus ligation increased the reactive oxygen species (ROS) amount of gastric lumen in

the control, 0.5BT, 1BT, 2BT groups as compared with normal group (Normal group, naïve rats

without any experimental treatment) (Fig 5B and 5C). However, a significant depressed ROS

production was noted in the 5BT group (311 ± 259.2 vs. 2262 ± 814.6, P = 0.0470) as compared

with control group. The histopathological evaluation of gastric mucosa indicated the increase of

erythrocyte extravasation, leukocyte infiltration and oxidative injury after pylorus ligation with

the excess accumulation of gastric juice (Fig 5D). As shown in Fig 5E, quantitative analysis

revealed the significantly decreased percentage of the area of erythrocyte extravasation in 5 BT

group (0.4310 ± 0.1018 vs. 2.402 ± 0.7618, P = 0.0084), lipid peroxidation product (4-HNE)

Fig 3. Status of animals and defecation recording. The effects of drinking BT on the physiological parameters of body weight (A), dry weight of feces (B), the ratio of dry

weight of feces to body weight (C), and moisture content of feces (D) in these five groups of mice (n = 10). All types of BT decreased dry weight of feces. The data are

mean ± SEM and analyzed by one-way ANOVA. �P<0.05; ��P<0.01; ���P<0.001.

https://doi.org/10.1371/journal.pone.0248508.g003
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within gastric mucosa in 2 BT (4.709 ± 0.3107 vs. 7.741 ± 0.5362, P = 0.0104) and 5 BT groups

(4.008 ± 0.3125 vs. 7.741 ± 0.5362, P = 0.0023), and IL-1β, which was produced by infiltrating

leukocyte, in 5 BT group (3.000 ± 0.4775 vs. 6.355 ± 0.5529, P = 0.0442), as compared with con-

trol group. However, there were no obvious variations of tyrosine nitration (3-NT) mediated by

reactive nitrogen species within gastric mucosa among different water drinking groups. These

results indicated that drinking BT may reduce gastric mucosal damage through antioxidant

activity, which were corresponded to the elevated systemic H2O2 scavenging activity.

Variations of gut microbiota after BT treatment

We performed 16S rRNA gene sequencing with the collected feces from rats to determine the gut

microbiota composition and analyzed the relative abundance of specific bacterial taxa to clarify

the effect of BT in gut microbiota alteration. The results of the histogram of genus (Fig 6A),

which represented the relative abundance of the top 10 most abundant genera of each groups,

revealed a few variations among groups. We observed that 0.5BT (0.02238 ± 0.002700 vs.

0.007793 ± 0.001514, P = 0.0089) and 2BT (0.02090 ± 0.003414 vs. 0.007793 ± 0.001514,

P = 0.0207) groups had significantly increased relative abundance of Ruminococcaceae UCG_005.

Fig 4. Effects of BT on gastrointestinal motility. The effects of drinking BT on gastrointestinal transit in the five

groups of mice (n = 10). Black arrows indicate the intestine traversed by the charcoal marker. S, Stomach; A, appendix.

Only 5 BT decreased gastrointestinal transit. The data are mean ± SEM and analyzed by one-way ANOVA. ���P
<0.001.

https://doi.org/10.1371/journal.pone.0248508.g004

PLOS ONE Effects of silicon-containing water intake in the rodents

PLOS ONE | https://doi.org/10.1371/journal.pone.0248508 March 31, 2021 9 / 17

https://doi.org/10.1371/journal.pone.0248508.g004
https://doi.org/10.1371/journal.pone.0248508


Relative abundance of Prevotellaceae NK3B31_group was significantly increased in 1BT

(0.08718 ± 0.01854 vs. 0.02202 ± 0.02209, P = 0.0272) and 2BT (0.1123 ± 0.02256 vs.

0.02202 ± 0.02209, P = 0.0015) groups. Relative abundance of Prevotellaceae UCG_001 was signif-

icantly decreased in 0.5BT (0 vs. 0.04730 ± 0.01355, P = 0.0032) and 1BT (0.01013 ± 0.003838 vs.

0.04730 ± 0.01355, P = 0.0246) groups. Apart from the top 10 most abundant genera, we further

analyzed a few relative abundances at genus level among groups (Fig 6B). Relative abundance of

Mucispirillum was significantly decreased in the 0.5BT (0.0001274 ± 0.0001178 vs. 0.0005215 ±

Fig 5. Effects of BT on pylorus ligation induced ulcer. The effects of drinking BT on pyloric ligation induced gastric juice secretion (A), the

curves of CL counts from gastric mucosa free radicals content (B), and the free radicals content within gastric mucosa (C). B, baseline; L,

luminol. (D) The histopathological evaluation of gastric mucosa. Yellow arrows indicate erythrocyte extravasation. (E) Quantitative analysis of

histopathology. The area of different targets were shown as percentage (%). Gastric juice, gastric mucosa free radicals, erythrocyte

extravasation, and area of IL-1β were decreased in 5 BT group. Area of 4-HNE were decreased in 2 BT and 5 BT groups (n = 8). The data are

mean ± SEM and analyzed by one-way ANOVA. �P<0.05; ��P<0.01.

https://doi.org/10.1371/journal.pone.0248508.g005
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0.0001547, P = 0.0304), 1BT (0.0001361 ± 0.0000654 vs. 0.0005215 ± 0.0001547, P = 0.0352), 2BT

(0.0000116 ± 0.0000062 vs. 0.0005215 ± 0.0001547, P = 0.0037), and 5BT (0.0001420 ±
0.00009196 vs. 0.0005215 ± 0.0001547, P = 0.0388) groups. Relative abundance of Rodentibacter
was significantly decreased in 1BT (0.00001449 ± 0.00001154 vs. 0.0001072 ± 0.00004335,

P = 0.0122) and 5 BT (0.0000174 ± 0.000007271 vs. 0.0001072 ± 0.00004335, P = 0.0156) groups

and was not detected in 0.5 BT (0 vs. 0.0001072 ± 0.00004335, P = 0.0033) group.

Linear discriminant analysis effect size (LEfSe) (Fig 7A) was calculated to determine the

specific bacterial taxa that were predominant among groups. We further analyzed the relative

abundance at species level among groups (Fig 7B). Relative abundance of Weissella parame-
senteroides was significantly increased in 2BT (0.0001073 ± 0.00003795 vs.

0.0000058 ± 0.000058, P = 0.0026) group. Relative abundance of Lactobacillus reuteri was sig-

nificantly increased in 0.5BT (0.04161 ± 0.01008 vs. 0.01714 ± 0.003338, P = 0.0281) group.

Relative abundance of Lactobacillus murinus was significantly increased in 1BT

(0.05977 ± 0.01867 vs. 0.01075 ± 0.006191, P = 0.007) group. Furthermore, Staphylococcus
aureus was not detected in 5BT group, whereas there was no significant difference between

control group and 5BT group (P = 0.5826).

Discussion

Emerging scientific evidences suggest the benefit from consumption of water-soluble forms of

silicon, which indicate a potential beneficial effect of silicon on human health [20]. It has been

Fig 6. Variations of gut microbiota after BT treatment at genus level. (A) Effects of drinking BT on the relative abundance of the top 10 most abundant

flora of gut microbiota at genus level. Bacteria represented by different colors are marked in the upper right of Fig 6A. (B) Drinking BT increased the relative

abundance of Ruminococcaceae UCG_005 and Prevotellaceae NK3B31_group, whereas decreased the relative abundance of Prevotellaceae UCG_001,

Mucispirillum, and Rodentibacter (n = 8). C, control; 0.5B, 0.5BT; 1B, 1BT; 2B, 2BT; 5B, 5BT. Data of relative abundance are depicted in box and whisker

plots and are analyzed by one-way ANOVA. �P<0.05; ��P<0.01.

https://doi.org/10.1371/journal.pone.0248508.g006
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revealed that silicon may influence the metabolism of different organs and possess several bio-

logical effects such as bone mineralization, collagen synthesis, prevention of aging, modulation

of antioxidative enzymes, reduced risk of atherosclerosis and nervous system diseases [20, 21].

However, detailed researches on the biological roles of silicon in gastrointestinal function are

still lacking.

Exacerbated reactive oxygen species (ROS) production causes several types of damage to

cellular structures, resulting in the development of a variety of gastrointestinal diseases such as

gastric ulcer and intestinal ulcer. An advanced technology has been established for generation

of reduced water with a lower oxidation-reduction potential (ORP) and antioxidant activity

[22]. The low ORP or reduced water can be obtained by activating the water using electrolysis,

magnetic field, collision, or minerals, which is similar to our BT water. In the present study,

Fig 7. Variations of gut microbiota after BT treatment at species level. (A) LEfSe taxonomic cladogram derived

from 16S sequences of gut microbiota among groups. Different colors represented significantly different taxa among

groups. (B) The effects of drinking BT on the relative abundance of gut microbiota in species level. Drinking BT

increased the relative abundance of Weissella paramesenteroides, Lactobacillus reuteri, and Lactobacillus murinus,
whereas decreased the relative abundance of Staphylococcus aureus (n = 8). C, control; 0.5B, 0.5BT; 1B, 1BT; 2B, 2BT;

5B, 5BT; N.D., not detected. Data of relative abundance are depicted in box and whisker plots and are analyzed by one-

way ANOVA. �P<0.05; ��P<0.01.

https://doi.org/10.1371/journal.pone.0248508.g007
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our data of in vitro experiment demonstrated that 0.5, 1, 2, and 5 BT had the ability to scavenge

free radicals. Therefore, we assumed that drinking BT might have the potential for enhancing

antioxidant capacity and scavenging free radicals in organisms.

Subsequently, our data revealed that the plasma from 5 BT drinking group possessed upre-

gulated free radicals scavenging activity. Moreover, this result was contributed by the elevated

the glutathione peroxidase (GPx) activity, which was one of the antioxidant enzymes in the

modulation of oxidative stress and ROS, especially hydrogen peroxide [23]. These results

proved the beneficial and systemic effects of drinking BT, and demonstrated the biological

availability of BT that contains water-soluble forms of silicon. Nonetheless, it still requires fur-

ther researches to confirm the underlying molecular mechanism of these phenomena.

Based on previous researches, water-soluble forms of silicon have more biological availability.

Excess amount of water-soluble forms of silicon can be eliminated through kidney within 4–8

hours after consumption, which are unlikely to cause excessive accumulation in healthy individu-

als [24]. Moreover, average daily dietary intake of silicon is 20–50 mg in populations with western

diets and 140–200 mg in Asian population with higher intakes of plant-based foods [25]. How-

ever, accurate evidences of oral toxicity in animals or humans are absent, safe upper levels for

humans have been recommended with 750–1,750 mg/day [26]. The maximum concentration of

silicon in BT is approximately 37 mg/L. Rat average daily water intake is approximately 10 ml/

100 g body weight, which represents 0.37 mg/100 g body weight of silicon intake through drink-

ing BT. Rat average daily intake of standard rodent feed, containing 0.32 mg silicon/g feed, is

approximately 5 g/100g body weight, which represents 1.6 mg/100 g body weight of silicon intake

from standard rodent feed. Therefore, the administrations of BT in our study are relatively safe.

Our results confirmed that drinking all types of BT for four weeks did not affect the body

weight changes. It was preliminarily confirmed that all types of BT had no adverse effects on

animal growth. In addition, the results confirmed that all kinds of BT reduced defecation,

which were not related to the weight of animals and the moisture content of the feces. The fur-

ther researches are needed to elaborate this phenomenon. In regard to gastrointestinal motil-

ity, only 5 BT can significantly reduce intestinal transit, which implicated the potential for

treating diseases with abnormal peristalsis such as diarrhea.

The gastric ulcer induced by pylorus ligation is mainly resulted from excessive secretions of

gastric acid [27]. Excessive gastric acid secretion also stimulates pepsin release and conse-

quently up-regulates the self-digestion of gastric mucosa [28]. Based on our results, it was con-

firmed that volume of gastric juice was significantly increased after pylorus ligation surgery,

whereas this phenomenon was attenuated in 5BT group, which implicated the potential of BT

for applying to diseases that caused by excessive secretion of gastric acid.

Damaged gastric mucosa activates the inflammatory process, which increases inflammatory

mediators including TNF-α, IL-1β, and IL-6. These cytokines can stimulate neutrophil

infiltration and epithelial cell apoptosis, reduce gastric microcirculation around the ulcer region

and delay gastric ulcer healing [17]. In present study, 5BT can significantly inhibit the increase

of free radicals, erythrocyte extravasation, and gastric mucosa injury induced by accumulation

of gastric juice, which contributed to the elevated 4-HNE, one of the lipid peroxidation markers

[29], and IL-1β, one of the pro-inflammatory cytokines [30]. However, drinking BT appeared to

have no effects on pylorus ligation-induced elevated 3-NT, a marker for reactive nitrogen spe-

cies [31]. According to current results, drinking 5 BT may not only attenuate the excessive

secretion of gastric acid, but also confer gastroprotective effect via reducing gastric mucosal

hemorrhage, suppressing pro-inflammatory cytokines from infiltrating leukocyte, upregulating

systemic GPx activity, and consequently depressing lipid peroxidation within gastric tissue.

Previous scientific evidences have demonstrated that gut microbiota were profoundly asso-

ciated with nutrition, health, diseases, and gastrointestinal functions via various metabolites,
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including bile acids, amino acids, and short-chain fatty acids. In addition, previous research

indicated that the variations in gut microbiota among individuals were highly associated with

age, stress, probiotics, prebiotics, and dietary patterns [32], which supported the possibility of

gut microbiota modulation through silicon-containing water intake. Present results confirmed

that drinking some concentrations of BT increased the relative abundance of Ruminococcaceae
UCG-005 and Prevotellaceae NK3B31 group. Ruminococcaceae spp. account for a relatively

abundant part of the human gut microbiota and affect several metabolic functions by the pro-

duction of butyric acid, which may protect healthy subjects from chronic intestinal inflamma-

tion [33]. Prevotellaceae NK3B31 group can produce short-chain fatty acids and may promote

anti-inflammatory responses. Besides, abundance of Prevotellaceae NK3B31 group is nega-

tively associated with dextran sulfate sodium induced colitis [34].

On the other hand, some concentrations of BT decreased harmful flora such as Mucispiril-
lum and Rodentibacter. Previous studies showed that Mucispirillum is positively associated

with the increased plasma level of lipopolysaccharide, and is assumed to be microbial marker

of colitis [35]. Rodentibacter spp. are considered as opportunistic pathogens of laboratory

rodents. Rodentibacter spp. are responsible for the prevalent bacterial infections in laboratory

rodents by producing diseases along with other primary pathogens, such as respiratory tract

and urogenital tract infection [36].

Moreover, our results indicated that some concentrations of BT increased the abundance of

beneficial species such as Weissella paramesenteroides, Lactobacillus reuteri, Lactobacillus muri-
nus, whereas some concentrations of BT decreased the abundance of harmful species such as

Staphylococcus aureus. According to the published evidence, Weissella paramesenteroides has

been considered as probiotics because of its antimicrobial activity through the production of

bacteriocins such as weissellin A [37]. Lactobacillus reuteri is considered as probiotics because

of its ability to inhibit the growth of the other potential pathogens such as Salmonella typhimur-
ium by secreting antibiotic substances such as reuterin. Lactobacillus reuteri can also improve

many conditions including diarrheal disease, infantile colic, eczema, and Helicobacter pylori
infection [38]. Lactobacillus murinus can enhance intestinal barrier function, reduce the translo-

cation of bacterial products, reduce systemic inflammatory marker in mice, promote regulatory

T cell and inhibit the development of dextran sulfate sodium-induced colitis [39]. Additionally,

Staphylococcus aureus is a well-known opportunistic pathogen, which causes a variety of disease

in humans and animals, such as psuedomembranous colitis, microbiota disruption of human

colon and the antibiotic associated diarrhea during antibiotic treatment [40].

On the basis of our results, administrations of BT can partially increase beneficial microbes

and decrease harmful microbes, which implicate the effects of BT on gastrointestinal function

regulation and the potential of BT as a prebiotic. Recent studies also indicated that regulation

of gut microbiota through dietary interventions may be a strategy for prevention or treatment

of gastrointestinal diseases, such as inflammatory bowel disease [41]. To the best of our knowl-

edge, this is currently the first research that explore the possible influences of ingesting water-

soluble form of silicon on the variation of gut microbiota. Our evidences preliminarily support

the potential of BT against gastrointestinal diseases through microbiota modulation. Nonethe-

less, thoroughgoing studies are still required to clarify the specific role of silicon in the metabo-

lism of gut bacteria, the metabolites of gut microbiota, and the interactions or cross-species

communications among beneficial and harmful flora that are affected by BT administration.

Conclusion

In summary, our preclinical study examined the multiple effects of drinking silicon-containing

(BT) water on the rodents. Our prepared BT demonstrated the in vitro free radical scavenging
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activity. We confirmed the effects of drinking BT on gastrointestinal motility including

reduced intestinal transit rate and reduced defecation. Administrations of BT showed signifi-

cant gastroprotective effects against pylorus ligation induced gastric damage, oxidative stress

and inflammation possibly through GPx-related systemic antioxidant activity. We also verified

that drinking BT increased some beneficial bacteria and decreased some harmful bacteria,

indicating the favorable effects of BT on gut microbiota modulation. For the first time, this

research evidenced the beneficial effects of BT on gastrointestinal function and gut microbiota,

which demonstrated the therapeutic potential of BT for the prevention or treatment of gastro-

intestinal disorders. Nevertheless, further studies are still required to identify the exact under-

lying mechanisms of BT consumption against gastrointestinal disorders.
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